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1. ABSTRACT

1.1 Objective

The objective of this effort has been to provide to

image processing systems, such as the RADC AFES (Automatic

Feature Extraction System) and MIES (Multi-Imagery

Exploitation System) testbeds an increased capability for

discriminating tactical targets from the surface background

in thermal infrared (IR) imagery. The approach has been to

investigate the present theories of the thermal emissivity

and reflectivity of natural surfaces and to apply these

theories to the development of a background model. This

will hopefully lead to the construction of algorithms to be

used as a background information filter to aid in the

separation of targets from background.

1 .2 Background

Target detection for thermal IR imagery is usually ,-

accomplished by pixel intensity thresholding routines. hct

t arets (vehicles with engines running) appear as high

in.ensity (bright) areas on IR imagery. A threshold limited

detector shows all pixels above a specified intensity value

as targets that have, at the time of imaging, a large

temperature differential from the background. However, when

a significant temperature differential is not present

targets are very difficult to detect by simple thresholding.

............. ...._.., .--...... .



This effort has addressea the problem of detecting

targets which are close to ambient temperature. This was

*done by modelling the background and by using the model as a

base for developing an understanding of physical processes

and their variations, which will.(with further work) lead -o1,

tne construction of a filtering algorithm. This algoritn.n

would be used to eliminate the background information

causing any objects or targets with characteristics

different from the model to stand out. We:

a. investigated theories of emissivity and reflectivity of

natural surfaces and determined which would best fulfill

this effort's objective.

b. Adapted chosen theory to an imagery format.

c. Developed a simple model which simulates the emissivity

and reflectivity of natural surfaces, leading to an

understanding of the physical factors (and their

variations) controlling the remote sensing process.

d. Developed an algorithm for the model, to study major

remote aensing variables and their random and systematic

0 variations, so that advances may be made towards

developing an optimum parametric envelope for data

acquisition and analysis.

..- . . - . . -..
f.'-.". . - .,' .'''-''- ". -... '- ',''-'".''.'..',.',.'.. " ,"..''','° ' ,',,' , ''-''.., "'- -- . .' .' '.-'.-..'°,".-'. '.'"-'°-'
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e. Made recommendations for further reievant. wor-.

f. In this initial examination of the problem we were

forced by lack of data and by funding and time

constraints to make the following assumptions for

numerical calculations:

(i) goniometric isotropy of the target and background j
emissivities.

(ii) spectral invariance of the emissivity of ground target

and background materials.

(iii) transmission through a homogeneous atmosphere, using

typical published data.

(iv) zero atmospheric self-radiance

Further work is needed in which improved simulation models

are used. Indeed, an end-to-end simulation of the remote

sensing process is needed. It is necessary to consider the

interaction of sensor point spread function with -n-

r e Ee r ,ger, ecus field of view: something which was noz

possible in this project. -
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2. INTRODUCTION

Thresholding as a technique for target detection,

identification and tracking and possibly for target

quantification is of limited use. It is a technique which

is not. suitable for situations where the target differs b.y

only small temperature differences from the background and

for situations where both the target and the background show

variations in radiance which can approach or exceed the

differences between the mean values of the temperatures of

the target and of the background. Under such situations,

neither thresholding nor (probably) any other form of"

conventional signal processing can be useful in contrast

enhancement or in target extraction.

One purpose of this study has been to concisely and

clearly state the established principles which govern the

detectability of different targets from each other and from

their backgrounds in order to better understand factors

determining the parametric envelope for optimum data 6

acquisition and extraction. The reasons for this approach

will become clear later in the report.

Those factors controlling the remote sensing process

all.need to be considered in concert, since the variance in

sensor output obtained when viewing the target as compared ..

to viewing the background will depend upon the variance in

ach of h~ose parameters contributing towards the sensor

, - . , . . m ' . . ° . . . ./ . / . . -- . , •. *. . . . . . . . . . . . " .-
°

' ," ' '
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output. These are, for exampie, target and background 1
emissivity and their variances with angular regime and with

slope, aspect, soil moisture, microclimate and wit .-

variety of other environmental factors. Also important are

the variability of atmospheric transmission in the bandpass

or combination of bandpasses used to observe the target and

the background; transmission (and atmospheric self radiance)

including the presence of scene obscurants . The interaction

of the spectral radiance from the target with the spectral

response of the sensor ;Nill be important in determining

sensor output. The polarization of the radiance from the

target and its interaction with the atmosphere (depolarizing

effect due to multiple scattering) and with the inherent

polarization of the sensor will be important in determining

sensor output. Sky radiance will be an additional factor in

determining composite sensor signal output.

In the case of a heterogeneous scene, consisting of a

number of scene elements, each of which has its own angular

;nisotropy in emissivity and in bidirectional reflectance

'optical reflective regime) the point spread function of the

'" detector or of each element of the detector (in the case of

an array) will interact with the heterogeneity of the target

and with the angular disposition from which it (the target)

is viewed.

I%



Sensor ncise, optical effects and stray radiation

within the sensing device, tracking errors, the effects of

y radiance, cross-taik between different elements of an

-rray, the magnitude and dimensions of the point spread

function and its interaction with the composite scene,

consisting of a number of different scene elements will all

effect the overall output signal obtained for each pixel

viewed by each instantaneous field of view, and will

therefore affect the accuracy with which target and

background may be discriminated.

Due to the short duration of this contract, it was

considered important to consider those elements most

important to the development of the ideas prevalent, indeed

predominant in the statement of work. To this end,

classical blackbody radiation theory, published atmospheric

transmission data and multivariate statistical analysis were

used to determine the relative advantages of single band and

two-band data acquisition techniques for target detection,

tracking and quantification. To the extent that detection

,7 7.4 scr m nation the two terms in 'his report will be

ccnsidered to be synonymous. The ffec-,s of atmospheric

self-radiance and the effects of the point spread function

were not considered for reasons of time.

* .



a-ae:na1ic 1 analysis has been performed for single

band and for band ratio techniques in order to determine the

feasibility of target discrimination at low target-to-

background temperature differences. The examples selected

are specific to a limited range of target and background

emissivities, which are considered to be Lambertian.

Atmospheric transmission is considered to be uniform and to

consist of certain pre-selected values taken from the F .

literature as typical. Variances for these parameters have

been selected from an examination of the literature (e.g.

14the Infrared Handbook ) and are considered to be reasonable

fcr a first order analysis.

A literature survey of the current state oi the art as

reported in the unclassified literature has been performed"

and is included in the discussion. Conclusions may be drawn

with respect to promising new avenues of research for

improved target tracking and discrimination, for the

development of an optimum parametric envelope for data

acquisition and analysis, for optimized target detection

zrqcking and qu ntifiction. Suggestions are mcide ior

continuation and extension of this work in related areas

which we had no time to investigate in this study such as,

for example, dynamic viewing using staring two-dimensional -.

pyro-electric or quantum effect arrays using CID or CCD

devices. While the reported literature shows empirical

comparison and evaluation of dynamic viewing of selected

targets under ideal conditions, it is ccsid red t fa



more extensive modelling studies are required in ore:.

determine the optimum parametric envelope for using two-

dimensional arrays in a dynamic viewing method of opera-.icn.

These remarks apply to nadir-pointing sensors, but will

apply even more to reasonably wide angle (10 - 20 degree

field of view) scanfed or two-dimensional sensor systems

VlOitwg offiqteiy towards (say) the horizon from stacE or

from airborne platforms , or even at ground level.

A major emphasis in this report is to point the way

towards future areas in which it is recommended that

-esearch efforts be concentrated.

FA Th&RS CONTROLLINTG THE RELATIONSHIP OF REMOTELY SENSED

r\ADIA IE TO GROUND FEATURES

A.O Introduction

While there has been a consideration of the many

., ctors affecting the remote sensing process (e.g. ) and a

onslde.tion of those factors affecting the selection of
2,3,157 <'

" r;:p;osses for smart sensors 5 there has been littie

4-9 i0 ii10,1
work orn zre eff -cts of systematic and of rano-.

vari-atlor.s on the accuracy with which targets may be

discriminated using radiance data. We shallconsider here

of the factors controlling remotely sensed radiance

levels, the equations describing those factors and the level

vr:-ton which may be typically anticipated to occur in



totally eiiecllv-:. !LI , :huwhand Cray show,65,. -

up to 30% of the IFUV could be filled by cloud over a

typical target, before the resultirE ig o

recognized as cloud, using current NOAA AVHR. daz, 6resninE

algorithms. Cloud contaminated pixels, once recognized, are

discarded from further analysis, since there is no accurate

w~y to correct for cloud without making assumptions aboum,

tedegree of cloud contamination of flagged pixels. A

qualitative illustration of the effects of cloud

contamination is to point out that areas adjacent to cloud-

covered regions usually have a modified color balance on

izr~ctcive computer screens. That is, such areas may be

vewed as "different". However, a far more quantitative

"on t=ir numan viewing of an interactive computer screen is

:L awlte pixels which are cloud conzaminate, r r

suspc 'te of being so.

InvoStisations are currently underway to study the off-

nadir effects of unresolved cloud and haze on target

nl:wr~inution for atmospheres of Aifferent turbidity.

* A .. Th ffect of randoum vs. systematic errors i

rocoruec radiance levels.

A2 pointed out by Duggin 66and by Duggin, et. al 6

tK~a: 3e both systema tic and random errors in radiance

levels r"corded from targets which are to be discriminated

arc:::.,~ .The systzematic effects may be correcTed for
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as -I
T is :c. i w s Trc -e g en e ra l ca se o f a m ix e d .3

(heterogeneous) pixel, as shown in Table 1. Here aA is the

to, z-- i-stantaneous field of view (IFOV) filled by
., while a C is the fraction of the !FOV filled by

cloud. Thus, in addition tu atmospheric effects mentioned

previously, opaque cloud (or haze or cirrus) can alter te

absolute raciance level recorded wnen viewing a given target "

and may (depending on the spectral reflectance

characteristics of the cloud) alter the spectral

distribution of target radiance.

Cloud which fills only a portion of the IFOV of the

detector does not result in a radiance level or in a

spectral distribution in radinnce recorded by several

cI 'nneis, which characterizes cloud. Fowever, LIresoived

cloud can have the same effect as cirrus or haze, namely to

distort the spectral radiance signature from the target,

which is to be discriminated from its surroundings or

quantified in some manner. While the photointerpreter

r i e upon shapes , texture , rela ive positions and

on co >-ricbr s 01

..... ..... ... of u tis pectr l ! ... ' r. lie s only upon 

digital counts recorded from the target in each sensor

cha.nel. Therefore, unresolved cloud, cirrus and haze can

re slt in errors of cmision and/or of commission if ther'

is not some means of detecting the cloud, haze or cirrus-

contaminated pixels so that they are not considered in the

a . i . Sc fa r, c ad s oe in ng a - r ri m S r no t



Sarees na will per t m ;,r;3o8s t: b- ::rze s on

images obtained over different areas. Such corrections are

necessary to permit analysis for monitoring cihange in ground

cover over large geographic areas and will enable

quantitative evaluation of temporal change in the values and

in the spectral distribution of recorded radiance.

Such angle-dependent effects are systematic and may, to

some extent, be corrected for. This may be achieved by

parallel empirical and theoretical (modelling) studies.

B.1.e. The effect of cloud and haze.

Cloud, haze and cirrus may be present in constant or in

predictably varying quantities across a scene, in which case

they will modify recorded radiance as reported by Duggin,
64-67

et. al The overall recorded radiance signature in

tandpass r will be, from a given target (A) (given that the

cloud is a Lambertian reflector with a spectrally invar-

iant reflectance factor RC).

NS r f (t ). { (aAx RA(O,;O' ,' ,X) + ax Rc)Escatt(e, ,A)d.d.

Al

+ LT( ,;,X)(aARA(e € + aRc)-

TAA
Z% W

x exp "
exti;,",,,z) d JL d( ;e' ,',X)de-.d ,

A2

I I

A . - -" . A - . . -. -- , -. --.-.A < . . .. -. - . . -V t - . - .- ' i
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(3.11). I( ) is the spectral respocnse of the sensing device

and equation (3.12) may be more fully expressed (so that the

relative importance of the abovementioned factors may be

appreciated) as:

N r .a[ ( , ; , '.) E catt( , , .d d + LT( , , .R ,,t', , )[""

X eXP 81f B' (E)".0". X.z).d6". do".dz) +J'f Lpah (6'; '4'.)d .d ~dlSo(-I/f foooo. .
0 0 0

I (A).dA

(3.13)

Here the sensor view and azimuth angles are e' and c'

Not surprisingly, it has been shown that there is a

significant dependence of recorded digital radiance levels

on sun-target-sensor geometry 4-9 for the NOAA AVHRR, SPOT

4 63and MSS data There are indications that this is also

true for thematic mapper (TM) data. Empirical understanding

of the dependence of recorded radiance on scan angle, season

(solar declination) and latitude should lead to an

approximate correction for these parameters, permitting

radiometric comparisons (and therefore classifications on

the basis of radiance levels) across images. Such

corrections will also permit quantitative comparisons to be

made between images obtained at different seasons over the

I --2



There are "zero power wavelengths" (A' 2 ) which bound each

sensor bandpass, and at which the response of the sensor is

zero. However, between these wavelength limits, the

response of the detector is not constant. Since the target

radiance and the atmospheric transmission and path radiance

also vary (each in a different manner) across each bandpass,

int~eractions between the spectral response of the sensor,

the spectral radiance from the target, the spectral

backscatter from the atmosphere and the spectral extinction of

the atmosphere along the path from the target to the sensor

may be anticipated. This has been pointed out by Slater
5 9' 6 0

and by Duggin, et. al 10,61,62

The signal output n-- the sensor (normalized sensor

response) is given by the equation:

A2

NSr =fIM. LD( 0, 'r,,)} d. (3.1,)

r I(X).dX-
(312

where L - , ), the spectral radiance incident on the

sensor is due to radiance reflected from the target for the

sun-target-sensor geometry considered, after modification

for the spectral extinction along the atmospheric path from

the target to the sensor, plus the added spectral

atmospheric backscatter (path radiance) for the same target-

sensor-geometry as considered in equations (3.10) and

~~~~~~~~~~~~~~~.- . . -. .. . .. . . . . . . . . . . . ... -_ • _ . . . ".. " .. . . . . . - • - . ." . . .° - , . ' " ' ' ' -



'r exc , , " , ,z) is the extinction coeffici :- -!t"

altitude Z along the path to the sensor and Lpath(e , ;e, ,Ix)

is the path radiance scatterec into e sensor by the

atmosphere in addition to radiance transmitted from -ne

target at ground level.

it may be readily seen that the contrast in recorded

radiance between two targets is reduced by botn at;rosp.,ric j
extinction and by the addition of a background radiance

level (e.g. ref. 50 206). The reason for this is that

the level of useful signal is reduced by the atmosphere,

while there is an addition of purely atmospheric signal

which contains no useful information.

a Some correction can be made for path rndiance and fcr

atmospheric extinction. However, methods currently uses.

'ssume that the atmosphere is constant across the image d

45
area (e.g. ). Further, either approximations arE made in

that all signal from low albedo areas is supposed to arise

45
from the atmosphere (e.g. ) or several meteorological

inputs are required in order to compute the modelled

43.* corrections (e.g. ). i'

B.1.d. The effect of the detector.

The response of the detector is wavelength-

dependent across those bandpasses to which it is sensitive.

* in other words, it is not either "on" or "off", depending

.( )po wvelength. This is illustrated in Fiis. 9 and 10.
::-vvh,



R.J.

goniom-zr-: nemispherical-directional reflectance factors 55 -5 8

r ar ions in giob3- irradiance across an imaged area

will also occur due atmospheric transmission fluctuations

(tnat is, variations in time at a given location will be

similar to variations with space at a given instant in time).

* Radiance from the ground will also be modified by the

- atmosphere, prior to detection.

B.1.c. The passage of reflectea target radiance to the

detector.

Radiance reflected from the target may be most exactly

expressed by equation (3.10). However, some radiance is

absorbed and scattered out of tne reflected beam by the

77 - 128atmosphere This may be considered by using a

modification of equation (3.2) allowing for the fact that

extinction along the reflected path may differ from

extinction along the path of the incident radiance falling

on the target. Fig. 8 explains this relationship. Thus, the

radiance falling on the detector is given by:

z Tr T

* LD(e, ;e' , X' ,x) = -x f f .*-8ext(e" " "-Xz)dB d d

0 0
iT i

+- f f L;O0,,X)d6d0~ (3.11)J Lpath
0 0

r-71

-- *.., . -.- , ,. _ • * . ". " * -- -_ * 7.- " . * -,
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The relationship between incident, reflected and absorbed

radiance is shown in Fig. 7. As pointed outby, for example,

" 19
Kriebel and by Kirchner, et al 52, it is the interaction

of the polar distribution of the spectral irradiance field

with the bidirectional spectral reflectance factor which deter-

mines the angular distribution (and the absolute value at any

given angular orientation) of spectral reflected radiance.

Thus, equation (3.9) may be more exactly expressed as:

o o

+ L (3.10)(O,0 ;0' , ', *) (3.,10)
T

where R(e,0;6',O') is the bidirectional reflectance factor 5 3

Thus, while equation (3.9) describes the spectral

radiance reflected into a given direction, as a function of

- overall irradiance level, equation (3.10) takes into

. consideration the polar distribution of the incident

soectral irradiant flux field.

10,11,19,52
It has been shown (e.g. 1 19 ) that the scalar

global spectral irradiance and its polar distribution are

time-dependent. Therefore, both the scalar value and the

polar distribution of this quantity may vary between

sequential ground measurements of target radiance and

irradiance, giving errors in estimates of spectral



Tne radiance reflected into any polar direction may be

expressed as:

where R(27; e', A' X) is the hemispherical-directional spectral

53
reflectance factor which relates the spectral radiance

reflected into any selected direction (seleccea oy tne scan

angle and by the ground track of the sensor platform) to the

total scalar (global) spectral irradiance. The angular nora-

tion used is shown in Figs. 4 and 5.

There can be considerable angular anisotropy in the

spectral hemispherical-directional reflectance factor.

Indeed, a polar plot of this factor generally produces a

non-spherical surface, whose irregularity is indicative of

the degree of angular anisotropy in the spectral

bidirectional reflectance factor. Experimental evidence of

such anisotropy has already been widely published (e.g.

furthermore theoretical calculations indeed predict such

anisotropy (e.g. 20 - 25 ) in a manner which has been

experimentally confirmed (e.g. 28, 54). Fig. 6 shows the

variation of the bidirectional reflectance factor with

wavelength and scan angle for wheat at a growth stage of 3.5
27,36,

on the modified Feeks scale, calculated from published data

70 The solar azimuth and zenith angles are taken to

" correspond to those for the NOAA-6 advanced very high

resolution radiometer (AVHRR).

v ~ v - -.., " -. .'. '. -.' ' . -- . " - , , . . .. . .. . .. . .- .- - , . , ...-
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'n atmospheric number density(m

wi r

o h -" a~lir~ude (kin)

6 r Ri yleigh scattering cross section (m2)

nr =autmospheric number density (m-3) iii.

np aerosol number density (m,

AV ozone absorption coefficient (cm- ) I
D3 = ozone concentration (cm km- ).

B.1.b. The reflection of radiance from the target.

The situation at the target is shown in Fig. 3. The

total resolved component of radiance falling perpendicularly

- •on the surface is shown as the scalar quantity E (X). This

o-: antity will depend upon the solar zenith angle , upon the

various atmospheric extinction coefficients and upon the

amount and polar distribution of cloud (8TII'19'5052).

There will be some energy which will be absorbed by the
ground target. This is E absand will depend upon

polar direction, since there will probably be angular

anisotropy in the absorbing properties of the ground.

The energy reflected in a given polar direction will be

LR (e',c', X) . There will be a net balance as given by the

equation:

LE() R LR(0 ,',)co - d E abs(', ', X)cos 0'de'.d '

0 0 0 0 (3.8)

. .



Here (6',, .Z) is the total extinction coefficient

~ (O.&',~z)is the coefficient for Rayleigh scattering.r

a (Up"Az is the coefficient for aerosol scatterilig.

B3 (6,').)is the coefficient for ozone absorption.

The total irr radiance on the target at wavelength .\ is given

* by the sum of the radiance from the sun's disk LT(Q,4,X)

and the irradiance from the sky (scattered radiation), see

SFigs. 2 and 3.

)e ( L (ML Cos E '- ,) 5 ... B() Cos " d ,.d 7T J 1 (3.4)

[e.+,f

0 0

Here E (X) is a scalar quantity; while E scatt (e,4,x) is a

*polar vector which represents the scattered radiance from

each point in the sky. Integration of the component Escatt-

*over the hemisphere of the sky gives a scalar quantity

which represents the total "sky" irradiance. LT(er.X).C5 e.--

is the resolved component of the radiance from the solar

disk which falls perpendicular to the ground.

Approximate values for the extinction coefficients, in

terms of readily measured physical quantities are given by

a(e.g.) Slater w r

ir(h) a~ nr(h) x 103(3.5)

n (h)
() (h) =8 nT (3.6)

p

S(h) -A D (h)
3 v 3 07

' -
which represents...........................T ,)..... ....

( . g* .) Sl te 50. .]:]...



B.1 The optical-reflective region of the spectrum

In the optical-reflective region, we shall consider the

remote sensing process in three parts; the passage of

radiant energy from the sun to the target, the reflection of

-nergy by the target and the interaction of the atmosphere

*-. with reflected radiance before it reaches the sensor.

B.1.a. The passage of radiant energy to the target.

Fig. 2 shows the passage of solar radiance through the

atmosphere to the target on the ground. The solar zenith

and azimuth angles are determined by the local time, season

(solar declination ) and latitude ¢ . In fact, the solar

zenith angle e is given by the equation:

Cos e = Sin .Sin 6 + Cos O.Cos 6 Cos 15 (TH + - SLN) (3.1)

where TH is the Local time in hours, TM the local time in minutes and -

where SLN is solar noon, the time at which the sun crosses

the meridian.

Losses from the radiant beam from the sun's disk occur

due to scattering and absorption. Broadly, the radiance

* reaching the target along the direct beam from the sun's

disk is (e.g. 50)

Z ? I

0 L ,) fexp of ro ext
L0 (U~~.) S~L f j (OYP0



:. , . . ., - • •• - , : z . : - . : . A ? .

eflecz of the atmosphere, in orazr ti correct for it (e.g.

i7,37-49) Such models generally assume that the atmosphere

.- is not turbulent, but ra.Ler consists of a series of stcady-

staLe, layered media, with discrete and constant aerosol,

molecular and particle concentrations.

Before dealing with variations in these quantities, we

F.u2; quantitatively describe the entire remote sensing

process in an overall manner as outlined by (e.g.) Maxwell

40

. . .Z

%. .



-* .:cme of those factors (on the b.si c f what very limitec

experimental data exists). The effect of such variation on

recorded radiance levels, on target disurimination and

q quantification, on system design and on data colleution and

analysis optimization will be considered.

B.0 Discussion

The interactions occurring between solar radiance

incident on the top of the atmosphere, the atmosphere, the

ground and the sensor are shown broadly in figure 1. It is
*

seen that solar radiance (Lo ) incident on the top of the

earth's atmosphere is subject to losses in eacn polar

direction ( 6 , ¢ ) caused bY scattering (Ls ( - )) and

absorption (L (e,¢)) (e.g. ) during its passage through -
a

the atmosphere. The total energy which reaches the earth's

surface is given by the sum of the radiance from the solar

disk, plus the energy scattered from the sky to the earth's

surface (diffuse irradiance or "sky radiance"). The earth's

.-.surface reflects radiation in an anisotropic manner, which
20-25

has been described analytically 2and which has been

observed experimentally (e.g. 26 - 36 ) The radiance

reflected from a ground target into the direction of the

0 sensor is again subject to scattering and absorption. Some

radiance reflected from adjacent target areas is scattered

into the reflected beam and radiance is scattered from the

atmosphere into the sensor ("path radiance" or

"backscatter"). Models have been developed to describe the

6'7
. ..
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, r- i , l using regression equations developt=,--

6,68
studying a large volume of data However, the nature of

random errors prevents their correction. The best that may

be achieved is to determine the magnitude of the random

errors and to dstermine their effect upon feature

10
identification and quantification . Tne effects on sensor

ouuut of random and systematic errors in various remo t

sensing variables are shown in flow-chart form for tne

optical-reflective part of the spectrum in Fig. 11 and for

tbe thermal infrared region in Fig. 12.

0 Thus, in the event that two targets, A and B are to be

discriminated and there is no visible cloud in the sky, znen

the radiance difference needed to perform a dis:rim r rtion

with 95% confidence would be given by the expression

1/2

A BLL LL
B-" A B) (3.15)

where H.W. denotes half the width of the 95% conficence

i nzerval on the difference (L) - (L) and where (Zr) andr r r

A B A
) re he -.,e~un radianue values in bandlass r

targets A an B. 'The means are obtained in each case froc. m

pixels. t(.5m- is the student factor where (m) is the

0 number of observations used in estimating (Lr)A and (Lr)

The evaluation of equa:- ion (3.15) using equation (3.14)

would be complex. However, if we use the concept of

hemispher iu-directional reflectance, in equation (3.9)

then we c 'I t, in . F .. e soltion from the works of

6< ' " " - .-'"-- : -: < ::' - , " . , ,,, v " -:.' " .. -. - - ,: --- " " ., " .2"" - ''-'. ""

" "V - "" -- " . " -'': '. "::" ' °' ' " - " """ " ." '"- - -- '". . " "" " ' "



.JDavis 6, such as pt'apos,~ . ~ 6as given -n

equation (3.16).

he
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- Here we refer to meLn radiance differences at a specific

wavelength A, instead of across bandpass r. is the

- a mcsper i z.-ansmission. Note that we assume a fraction of

.. cloud a in the pixels over target A, while we assume a
C

fraction of cloud a' in the pixels over target B. This
C

formula would need to be computed for each scan angle,

putting in the values for each variable relating tc ihe

appropriate sun-target-sensor geometry.

It should be noted that if we consider the radiance

- output from the sensor (recorded radiance rather than the

radiance incident on the sensor as considered above), then

for each wavelength equation (3.16) becomes, more fully

expressed in equation (3.19) (nexL page). These equations

enable us to compute the necessary mean radiance difference

between two targets for target discrimination with a 95%

probability of being correct. The computation is unique to

each sun-target-sensor geometry and will depend not only on

the anLi!ar anisotropy of each target reflectance, but will

ais. depend uoon the angular anisotropy of the atmospheric

scattering functions. The computation is also sensor-specific.

In detail, the sensor output difference A for m pixels

0 obtained over each target, each partly filled by a proportion

of (Lambertian) cloud would then be:

L-

|° % . . . . . .. . . . . . • .° 4- . . • .
. °' " ". ' -- ,-°,' -" " . . " " , ", %° -".°°°- ° , . " 4 '' .'-.* "°
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A2
3 1%"-=}1.-.Aix.d ,- f--.o)d (.i

I~x) A)a d(A)[x)

.A - LCXJ (3.18)'T-:.:,~~f 1~)( 'X:

in order to be 95% confident that the two features are

indeed seperable on the basis of reflected radiance using a

bandpass r, whose upper and lower zero-power wavelength

limits are X.2 and ,the difference must exceed the value

of the following function:

X2

f.H.W. (•.A M I(_X).L(}

• J 1(X- .dX

A B

where H.W. ((Lr')A -(Lr)B) is the minimum recorded radiance i
difference A necessary to be 95% confident of discrimination

on the basis of sensor output. Of course, we can perform

such calculations for any pre-determined confidence level.

. ,. ,

.. . .

-::: ..- ,
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Fa to r' zhi ch will control the discrirninability ofii
targets, where

Dicrmna=lt D.F. =HW (T - B)

functionJI

66
as given by (e.g. Duggin )are several. T nese effects

are mentioned but have not been investigated in this study.

For discrimination to be possible D.F. < 1.0.:

i)relative areas in the iFQ)V occupied by unresolved cloud

and by target.

*(ii) atmosoheric extinction and its variation (here shown as

atmospheric transmission )for the sensor bandpasses.

* (iii) variation in the ,,--lative proportions of the IFOV

occupied by the target aind by cloud.647

fiv) -E:th radiance for t:. C.: tandpasses ana; t s

64

(v) rela cive it e d s u~ thie dL s:c u&iin indi

the babidpasses used and of the cloud present in the

64-66
IFOV where unresolved cloud exists.

(vi) variations in atmospheric turbidity and the average

value of this quantity across the imaged area. (e.g.68



S.?

-7 -.5-- :

iin.. Tre c erail level and spectral distribution o ):

irradiance.

(viii) The spectral responses of tne sensors in those

bandpasses used, and the interaction of such responses

with the target radiance.

(ix) random variability of the spectral bidirectional

refieczance factor across the sampled area. This can

be caused by (e.g.) topographic variations, textuai.

variations, slight changes in pixel composition, etc.

* (x) the dependence on sun-target-sensor geometry of the

spectral bidirectional reflectance factor, spectral

path radiance, spectral atmospheric extinction and

target discriminability. Due to angular anisozropy of

ground reflectance, it may be that discrimination of

some targets is optimal (target/background contrast is

*j maximum) at certain angular regimes (i.e. at certain

solar elevations and azimuths and at certain, possibly

off-nadir view angles).

(xi) The interaction of tne poinz-fpreaa fina~ion a' rne

detector with the n e e r c. n.-ty c- 7 ixel, 

consisting of different scene components. This point

is made clear in Fig. 13. Here, the point-spread

function of the sensor is shown superimposed upon a

nominal pixel (projection of the defined earlier (IFOV)

* on the ground) containing several different scene.-

>.5 .

... .. .. ..- - . . . . .. ,
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elements. Each scene element wil nave t own,

different angular spectral reflectance and emissivitv

anisotropy and so the movement of the sensor such trhe:

the IFOV is shifted by a fraction of a pixel will

produce a considerable change in sensor output. This

important point has so far received very little

attention.

An example 66, 67 of the effects of szan angle,

unresolved cloud and atmospheric turbidity on contrast ratio

is shown in Figs. 14 (clear atmosphere: meteorological range >

50 kn) and 15 (turbid atmosphere: meteorological range < 1C

kin). Here vegetated targets (70% wheat, 30% soil) and 10'0

wneat at a growth stage of 3.5 on the modified Feeks scale

(boot stage) are considered. In each case, a vegetative

index (VIN) is used to typify the target: the VIN used is

the radiance re-corded in AVHRR band 2 (0.713-0.986 'im;

reflected infrared) divided by the radiance recorded in

AVHRR band 1 (0.570-0.686 ium; visible). Three facts emerge:

firstly the contrast ratio (VIN /VIN ) is greatly

, reduced by unresolved cloud (and therefore by haze and

Oirrus,.. Secondiy, the contrast ratio is scan angle

dependent. Thirdly, the contrast ratio is reduced in

a scan angle-dependent manner by unresolved cloud for a turbid

(meteorological range < 10 km) atmosphere as compared to a

clear (meteorological range > 50 Km) atmosphere.

9<

62



-. 2. THE THERMAL INFRARED REGION J THE SPECTRUM

* - Evidence existS to snow that there is angular
, - 71-76

anisotropy of the emissivity of ground targets 7 In

the case of emitted thermal radiance, "atmospheric

attenuation consists principally of absorption, so that

equation (3.10) should be re-written, for emitted thermal

infrared radiance at ground level, as:

L(e', ,X) = X (',¢',A). W (T,X) (3.20)

where F e X , ' , ' ) is the directional radiant spectral

emittance and W(T, X) is the spectral radiant exitance of a

blackoody at temperature T (degrees Kelvin). The

assumption here is that the radiator is a graybody.

Therefore, in the case of emitted thermal radiance, the

equivalent equation to the optical-reflective equation (3.11)

LD(O' ,c' ,X) = LR(O' ,4' ,X)exp f SJ 'ex "€~)de".d,".dz "

i's

+I (-I'X (3.21)

sky................-.., .-.. . .. . . . . .. . . . . . . .



Here, it is assumed ,at the predominant atmospheric effect

77-89, 95, 96, 100, 103 T,
is absorption, e.g. . There is also

an atmospheric self radiance term:

Lsky ( , ,A)

This situation is illustrated by Fig. 16.

The interaction of this spectral thermal radiance with

the detecting device is given by the expression for the recorded

radiance NS

NSr  = -.

rr

I(X)~dX (3.22
AA

( . , X) - d . -d

. . . . . . . .. . . . . . . . . . . . . .
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Equations (3.15) ard (3.16) would also be different, of

course, for the thermal infrared case than for the optical

Sreflezive case. Here, we ignore the (generally trivial)

covariance terms.

HW L(x)A - L(A)B._

05 2 (t -') S,+ 205m (c2.+ (0, .,A) S ) .W(TA r ) .-

(,,X S + 2 (0',(',A) S ) W(Tx)
-n ATT E ACA) A'
+ 2 2 S~sysy}

L L(323)
sky sky (3.23

where S ., S , S and S represent sample
Z £EA EA B B Lsky sky

variances in atmospheric transmission, emissivity of target

A, emissivity of background B and sky radiance Lsky

Atmospheric transmission is given by
"C epd.d ".d

T = exp ( ext Z' "-.

o -T 0

More discussion will be made of this derivation later.

Equation (3.23) could then be substituted into

equations (3:18) and (3.19) to determine the value of a

discriminability function (DF) such that:

DF HW{L A

(3.24)
JAIi
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and D.F. must SS- than 1, for discriminaticn c-

target from backgrouna with a 955 (or some other pre-

determined level) of conficence.

The well-known physical factors controlling the remote

sensing process have been discussed and represented in

relevant form in this section. The relative importance of

some already repo:'-ed random ano systematic variations on

recorded radiance and on target discriminability and

contrast have also been discussed. These factors need to be

borne in mind when designing instrumentation or when

optimizing imaging conditions.

Assuming that the wavelengths for the bandpasses used

cv the sensing device have been best chosen for the task at

,na, (and tnis has been the case only so far as is possible

with limited data) it is possible that discrimination of the

target will be more effective for some sun-target-sensor

geometries than for others. it is also likely that there

are upper limits for unresolved cloud, haze, obscurants

and cirrus for which discrimination of targets of different,

seiected aibedos is possible. in order to understand the

principles controlling both the systematic and random

variations ciscussed above, which control the accuracy with

which selected targets may be discriminated, it-is necessary

to use both empirical and mathematical simulation studies

for the atmosphere, 37-49, 90-128 for sensing devices, 2,3,

..10,,59-6,1,36,16* ,241-66 -nd 'or the variabiliLv of rc.-

:... -.*. . . .nL,-
.i .:< ,.i_ 2 " " " : ':'-:>'< " - "-- <'""'" <  ' " """' " " " " :": "" " " "" " " ""

• .::::i.< -, .-.. .-- " - "" " :." " '- -"..- .v".?. " - : i; - • , i - v:or c ,,,,) n s:.._" _- t:-j:
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.ruuc to Lest' and calibrate the mathematical models _-

necessary to have sufficient measurements of the reflectance

factors and emissivity of the earth's surface at various an-

guLar geometries. Lnfortunatelv, few such data currentLy ex-

ist and there is little agreement on the methods by which such

critical data should be obtained.

While it is necessary to be p rigmat ic regarding .,

best use of existing data, it is suggested that few advances

in sensor design, in data collection optimization or in an

understanding of tne effects of random and systematic errors

on target discriminabilitv will be possible until

mneoretica studies are performed to parallel present

-?xperimental studies to increase our understanding of t-nose

a rs ,iisCussed above. Only such studies will mai:e

possible the collection and analysi--s of digital

multispectrai radiance data so as to minimize errors of

omission and comission in automated or semi-automated

analysis.

4.Sb[;§RS

S :nsing devices can consist of either scanners,

pushbroom array devices or staring arrays 129-203, 261-2S6

The scanner has the advantage of utilizing a limited nu:-- 7

ber of detectors whose spectral response and point spread

function may be relatively well known (although this is

pa-_nt-
1 not he case for (e .) the LandsaL ,ulti-



.,:rl scanner (ASS). Neither the NSS. nor th TM ha(;-

documented inherent polarization measurements performed,

nor was the spectral response o- each of the channels of-7

each of the bands on these devices well documented in the

open literature. (e.g. 5962)

As discussed in section f, ne poin spream iuncti o.
sensor means that the central portion s oi e t r ",

higher sensitivity than the outermost portions of the iFj:.

For a heterogeneous field of view or for a target which does

not completely fill the field of view, the position of a

small (sub-pixel sized) target with respect to the peak of

the poin: spread function is therefore obviously important

This fac: appears so far to have received relatively little

attention and it is recommended that more work is needed

here. Pushbroom scanners may consist of a single array of

sensors which obtains information in one spectral bandpass

or may consist of a two-dimensional detector array placed

behind a wedge interference filter where the axis

psrpediouC r t the grouni areck ck:,'ns sp:iallv varC'i-: -

infot'mat;on from different pixens -,d 'he axis alongtr.:

obtains information in different w vebands. Such a device".

clearly entails consiuerable problems in so far as high data

rates involved, coupled with varying instrument spectral

re nses out;;oon detectors, varying filter transmissions

in front of each of the sensing elements, absolute detec-

tv c; lih:atmn variation from element-ro-okment and



eric ....... ... .s lowed to v ar vIo7. 0. 6 to 1 00 in in-

croments of 0.02. For band (1.0 12 ,m) the atmos-

pheric transmission was allowed to vary from 0.60 to ..00
in n 0.0". This resulted in a range of ratios

(-2/l). fI coefficients of variation in both - and :2

was allowed to vary from 0.01 to 0.05 in 0.01 increments

,which was an estimate based upon the literature.

The discrimination function (D.F.) described in tcua-

tion (5.19) -,as plotted as a function of the rela:ive at-

mospheric transmissions 1 and in the two bandpasses

used and as a function of the temperature of the target

T The target temperature was allowed to vary from 2650

0.K to, 285 E in one degree increments. The background torm-

: erature was always 2750 K. The target was assumed to

i-o'Le a sw'cra! invariant emissivity. Exampcles of the

tinrce-di7.Cnsional plots are shown in Figs. Cl to C3. The

vertical axis is DF, while the horizontal axes are the

ratio (- /) of the atmospheric transmissions in the two

'ands used and the target temperature TA Fi-. Cl shows

the case .;hore the correlation coefficients between the

recordod r~i;.d:nces is 0.01, while the coefficient of *variatiol,

in each oL tao amosp}uric -ransmission values iand

for bands I aad ± is 0.01. Fig. CL shows a case which is

identical, except that the coefficients of variation for

and , are 0.05: clearly the increased variation in

atnos:heric transmission reduces the discriminabilitv

(i.e. increases D.F.) for an, given temperature. The

is to in ei.uher case.b.F. is r l~nC vc=. ]:l:on':JllV• to .-2/ 1 ,



S i:itar Lx, for tarze: S:

- ~ ~ ~ *S + -*

2 2 2

2, ,__-2 _ _ 2

2;.£

ZO,1,

(5. 18)

v'nere BE is the blacbody radiant emittance from

.c nc B in band 1 and BE is the blackbody radiant

emiltance from blaci:body B in band 2.

he discrimination function D.F., which must be less

tnan 1.30 for discrimination of target from background using

the recorded radiance ratios RA L /L and RB LB /L at
A2 A1 2 1

the 95% confidence level (equation 5.13) is given by:

o~~r-i(() + S
D.F. .m- (5.19)

(sR) A ,(SRR),

Calculations of D.F. were mrnde and tabulated. Here, as for the single

band calculations, samples of 20 pixels were assumed to exist in the

target and in the background areas. For bandl (3.5-4.irn) the atmos-
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tarting irom this point, we may use arguments simiLiar

to those embodied in equations (5.7) and (5.8) to deduce

that the major contribution to the variance in the ratio

between bands 1 and 2 of the raaiance from target A may be

attributed to atmospheric transmission variation.

That is,

LA 2  BB 1 2 .A 2  2

RA = -= (5 .15A)L A BBI E A1  I "LA 1  11 1

sR R-j RTt S(-) + 2p .).$ T 1R 11 16

(5.16),L

6AZ
since the variation in e and in EA is such that 2 is

A2  1 A1

always constant and since BB1 2 and BB1  are physical constants

which depend only on blackbody temperature. We may obtain an

estimate of the sample variance in the radiance ratio for target A:

(B 2& 2 ( 2 BB 2 A
(SB (A2\ 1 2 2

SRR) A T 12) -E .(S-) 7-_A \BB1 l/ kL, l \BB1 / \EA1, "~ Sm2m2

.4

2 2 "

+ 2( •12 ( )( ( (2)5.7
kBB11 TA (2T2 111 

.,1

I



tI*r modelling calculations were performed on t e

ratio of the radiance from the target, compared to that from

zne background in two different bands. That is, the ratio:

L B E I
A 2  12 A2  (5.15)

L . B
L 1 1 A1  -

where LA is the radiant emittance from target A in band 2

A2
(11.0-12.0 rm) and LA 1  is the radiant emittance from

target A in band 1 (5.5-4.1 pm). B1 2  is the blackbody

radiant exitance from target A in band 2 while B1i is the

blackbody radiant exitance from target A in band 1.

If FAl and &A, are zne average emissivities of the
1

target A in bands 1 and 2, then, from tne work of (e.g.)

Maxwell3Z it is reasonable to assume that there is little

,:avelength dependence of the emissivities, so that;

A2

= .0 (approximately)

Al

Further variations in LA will be very strorgly correlated

to those in so that the ratio;
EA 2

A 1

wl hange very little with variations in LA: the same rea-

ning mav be -i;Dolied to the emissivity of target B.

.....- .- •. ... .. .. .. . ......

-. '".-:- -. . ... .. °~~ ~. . . . . . . ........-.. .... -..- .:•.*.--- .--. -i-'-



Three graphs are shown of :he saz,, calculations at different

rotations, in order to best present detail. Like calculations

were performed for the 11.0-12.0 .m bandpass. Examples of

these calculations are shown in Figs. Bl to B6. Figures BI --

j through B3 show calculations of D.F. as a function of (TA,

* (1 - A)) at different rotations about the vertical (D.F.)

axis where T = 1.00 and = 0.90. Figs. B4 through B6 showB

similar calculations, with like rotations about the D.F. axis,

for 7 = 0.60 and c = 0.85. The D.F. peaks where target and

background emissivities are similar, especially at target tem-

peratures close to that of the background, as one would expect.

However, discrimination of target from background with even

turbid, variable atmospheric transmission and with variable

target and background emissivities appears possible, for some

circurmstances even with temperature differences as small as 1

degree Kelvin. The three-dimensional plots show the inter-

active effect of target-to-background emissivity contrast and

temperature differences, for different atmospheric transmissions.

As expected, the higher atmospheric turbidity and higher

atmospheric variability yielded a larger D.F.. Where the

temperatures and emissivities of target and background were

similar discrimination was impossible. The variation of the

recorded exitance would cause blurring of the characteristic

radiant exitance vs. wavelength curves for both target and

background. The closer the emissivity values, the closer

(and less seperable) the curves.
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In calcuiai. per formed, the covariance term was

always small. The target temperature was allowed to vary at

. < gr~e .. icremen-s from 265K To 285K The backgrouna

- :,a:'e was always taken to be 275K The target

emissivity was allowed to vary at 0.10 increments from 0.05

to 0.95. The emissivitv of the oackground w3s t ken to

be 0.85 and (in a separate rin,' 0.9r. AtLmospheric

transmission was taken to be 0.60 to 1.00 in 0.10

increments. The coefficient of variation (standard

deviation divided by the mean) for the emissivities was

taken to be 0.05, while that of the atmospheric transmission

was taken to be 0.05 also. Selected examples of the

results of these comprehensive calculations for the bandpass

3.5-4.1 -m are shown in Figs. Al to A6. For each data plot,

':he discrimination function (D.F.) is shown as the vertical

axis, while the two horizontal; mutually orthogonal axes

are target temperature (TA)(temperature of background (TB )

al.:avs assumed equal to 275K ) and (1 - LA). Figs. Al

through A3 show, for different rotations about the vertical

(D.F.) axis, the value of D.F. 7lr: cd aL functi C of

(-', (1_ - -A)" For these calculaticns = 90 and a:n:os-

...h~ric transmission 1.00. 'igs. 9- -. :i .- ;: show

similar calculations, with like rotations about the D.F.

axis, for 7 = 0.70 and EB = 0.85. Each plot of D.F. as a

function of (TA, (1 - CA)) is plotted for selected constant

background emissivity and atmospheric transmission values.

"' ,- -, .- v. - ..- . ..-- -.'. .: -, . ,. . . .-- . - . .'. .. " . -..... .. - ... . .. . -* °
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Now, as discussed in section 3, the half-width of the

95 percent confidence interval (or of any other pre-selected

confidence interval) on the mean radiance difference from

samples of pixels taken over target and background must be

greater than the difference in the mean radiance levels (for

the bandpass used).

H.W. -LA--.
(.- A B --

i.e. D.F. (5.13)

A 7B .

must be smaller than 1.0 for discrimination to occur. We

considered samples of 20 pixels in computing the student t-

factor t m for the 95% confidence interval;~0.5,

( 5M1 S + SLL H.W.(-A - TB (5.14)

S\
M I

Thus the discrimination function (D.F.) may be calculated

, from equations (5.11) - (5.14).

i7 7*

"@,

*

• ,". - U -
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Thus, for a single bandpass:

'L)_ AL\ L __S 1%
SLL (3LA +--- +- 1 LA

(5.9)

SLL )2 2 aLB /~2JLB/L\

B aBB B aT!aCa (5.10)

from equations (5.5) -(5.10), the sample variances in the

radiance recorded from target and from background in a

selected band are, respectively:

SBB2 2BB 2S +2 2E B '(L A LA T BB r SCA EA + C A lr A lr ITB1  A C

(5.11)

S LL 2 *BB r2 SB~ + CB BBr S + 2c-r BB 2r2 'P S C

~ 0 (5.12)



while that from the background was:

LB=EBR r (5.6)
r B 2r

where:

EAr emissivity of the target A in bandpass r.

= emissivity of the background B in bandpass r.

tr = atmospheric transmission in band r.

BBIr = blackbody emissivity for the target (1) at temperature TI.

5B = blackbody emissivity for the background (2) at temperature T22r2

6965It may be shown (e.g. 69, 5 ) that where a dependent

variable (v) is a function of two other variables (x,y),

then the sample variance in the dependent variable (v) is

given by:.

2[22

S V  + S + v S + lowerSVxx + yy . rer".
WV ax X (a \ ax Jkay1 order

terms

(5.7)

Here the terms of a lower order of magnitude are generally

negligible where the coefficient of variation of each of the

variables x, y is less than about 0.20 and the covariance may

be expressed using the well-rnown formula:

=y (Sxx) %  (Syy)k 58

* where P is the correlation coefficient between the two

sample distributions.

6%



*differeri: L:ndpasses.

Studies of the infrared Handbook (14) showed that

atmospheric transmission is maximum in the regions 3.5-4.1

i.m and 10.0-12.0 pm. For the purposes of this study, we

have, for reasons of time, restricted our attention to

target discriminability in each of the bands 3.5-4.1 _... n'

11.0-12.0 , m and for the ratio of the radiance recorceU_.a in

these bands. We considered the effect of random variations

in target and background emissivities and in atmospheric

transmission on the discriminability of target from

background. The case of the thermal infrared region may be

seen from the general principles referred to in section 5 to

be simpler than the optical-reflective regicn: scattering

processes cause fluctuations in target illumination, with a

consequent effect on target radiance fluctuation only in the

optical-reflective region.

We considered first the case where a target was to be

discriminated from background in each of the above-mentioned

two bandpasses. Here the radiance from the target was:

L AR BB (5.5)
LAr r lr

- . . "- . .-.". . . . -
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This expression may be written as: ,

= C1  -5  (5.2)

(exp (C -

where C = 2TrhC 2

and C2 = hc

k

The total (i.e., integrated over the electromagnetic

spectrum) radiant exitance of a blackbody is given by:

:-:.
1 4  -2

MTOT = T (Wn M ) (5.3)
C,4 15

C2

Of course, the quantities used in the above expressions

could just as easily be expressed in c.g.s. units, so that MX

and MTOT would appear in c.g.s. units.
TOT.

The in-band radiance M is approximately expressed as:

C1  T4  I X=X 2

M n (n) + 3(n.) + 6nX + e

2 n=l1 =. 2i j"

(5.4)

This expression was used to calculate tabular values of

blackbody exitance for different temperatures and for

: . . " , : " " ' : " " . . - - ,. -. : .* : . .. ..* : , , . . .
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In this case, because of the broad aims of the study,

it has been decided to use the assumption that tne tarEe:

and background act as Lambertian greybodies with almost

wavelength-independent emissivities at any given wavelength.

302
(e.g. ). This is a simplistic assumption. However, for

first-order calculations, in the light of conversations with

several researchers in the field and after a perusal of

available unclassified literature, this was considered to be

a reasonable starting point.

The Planck radiation law may be used to calculate the

total radiant exitance of a blackbody at a selected

temperature. This is shown in equation (5.1).

MX 27he 2  I

: X 5 exp hc - "

h (5.1)

where M I is the energy radiated per unit wavelength per

second, per unit area of the blackbody (Win2 A 0 1 ) (radiant exitance)

h = Planck'sconstant (J sec -I)

c = speed of light (m sec -I)

k = Boltzmann constant (J °K

A = wavelength

T -absolute temperature (K)

Q

0i



accumulation of scene elements, each of which has its own

angular anisotropy, considerable difficulty may arise in

consistent target detection, discrimination, tracking and

quantification, depending upon the location of the target

with respect to the maximum of the point spread function of

each detector element, if the target occupies less than 1 or

-2 pixels. Preliminary studies h-ave shown th.at there are pos-

sibilities of improving contrast enhancement by dynamic viewing

282or "dithering" (e.g. )the two dimensional array. At present,

very few studies have been reported in the unclassified liter-

* ature. There is a real need to be aware of the interaction of

scene heterogeneity, atmospheric transmission fluctuations,

* obscurants 778,and target aspect with the sensing device in

order to be able to define the optimum parametric envelope for

* target discrimination, detection, tracking and quantification.

* Much more work appears to be needed here.

* 5. MODELLING STUDIES

* A considerable body of theory exists for the modelling

-.. of the interaction of electromagnetic radiation with

*dielectric media. Generally, these models have been

idealized (e.,j. 14, 302-326)

* . * *- *
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varying point spread function from ue-:ct-cr Li<.(l
" to

detector element. However, the advantages of such a system

are that it does not entail moving components such as the

- - oscillating mirror or rotating mirror utilized in scanning

devices and should therefore have enhanced reliability. It

- is suggested that the success of such devices will rely

n eavily upon the developnent of adecuaLe onboard .areDroces-
| -+. ,.,.- -157 ""

sing facilities (smart sensor devices.e.g. 157

A staring array consists of a two-dimensional matrix of

either quantum detectors (such as silicon) or of pyro-

0 electric detectors whicn record information in the optical

reflective, mid-inirared or thermal infrared parts of tne

spectrum. In the case where charge coupled devices (CCD's)

or charge injection devices (CID's) are utilized, mosz of

the area occupied by the array can consist purely of sensing

elements. Where the photodetectors and the circuitry

involved in transferring the charge zo different registers

is located on a single plane, then perhaps only 50% of the

"real estate" of the array element may be occupied by

-ensors. Te di advantaes cf the z'w c- imensionel array are

.e sme as mentioned for the multispectral pushbroom

r... scanner. The point-spread function may look something like

* that shown in Figure 13 for each element of the array.

There may be slight differences from element to element, and

" ". there may be slight differences in the absolute calibration

* (radiometrically) of each element. Thus, when a staring

-r-ry views a s_ ene consisting 3 a he t2rogeneous ..

. --.....



Fig. C3 shows a case where the coefficiencs of variation

for T, and T2 are 0.05 and where the correlation coefficient*1

between radiance recorded in the two bands is 0.90: clearl-,

an increased correlation between radiance recorded in bands

1 and 2 (3.5 - 4.1 and 11.0 - 12.0 m) increases the dis-

* criminability of target from background (reduces D.F.). In

* general we found that as might be expected, the more variable

the atmosphere, the larger D.F.. However, the discrimination

* function (D.F.) is generally < 1.0 where the target temper-

ature is within 10 K of that of the background.

It is significant that discrimination is independent of

target/background emissivity contrast using the ratio method

and that for target/background contrasts of 1 K (or less)

discrimination appears more probable at the 95% confidence

level than for either of the single bands, for the levels

of atmospheric turbidity variance considered. Thus, the

ratio method would appear superior to the single-channel

method and would seem to be free of the dependence on

emissivitv variation.

... ..

. . .%.
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6. COECLUSj-;;, KECOMMENDATIONS AND SUGGESTIONS FOR FURTHER"'

WORK

Here, we present the conclusions drawn from this study,

plus general suggestions which one of us (MJD) has long

thought necessary steps in t research program to increase the

accuracy of ;arger detecio , ciassification, quantiiication

and tracr-ing.

1. The discrimination of targets from background under

40 the selected atmospheric conditions used in the modelling

calculations demonstrates the feasibility of detection for

small (e.g. 1 degree Kelvin = 1 C) temperature differences.

It appears :hat, for atmospheric transmission and ground

emissivity random variations which may be expected the

technique of using ratioed radiance values for the bandpasses

3.5-4.1 Lm and 11.0 - 12.0 um for reasons discussed above

offers advantages over the discrimination possible using

radiance data recorded in either of the single bands 3.5 -

.1 rt and 11.0 - 12.0 .

2. Real time contrast enhancement using histogram

* stretching, geometric stretching or other contrast

enhancement techniaues with micro-chip technology appears to

be a possibility, providing that the target occupies that

portion of the instantaneous field of view (IFOV) which has

* die Mra>ximum point spread function: (an area which needs

r 2 a rch) C1  .. The t '-!;et i sznmaller than the pixel "

0



(IFOV at ground level) cheni the contrast between the pixel containing

the target and the pixels containing only background

material will depend upon the position of the point spread

function with respect to the target. This is an area which

needs considerable study. It is suggested that little data

exists on the point spread function of any detecting device

and that little is known about improvements in contrast

between target containing pixels and background pixels using

dynamic viewing or "dithering" techniques. This area is a

major gap in present technology and must be closed,

otherwise predictable discrimination, identification and

quantification of targets may not be possible.

.. The inherent polarization of detection devices is a

relatively unexplored field. Work in the optical reflective

287-301region (e.g. shows target radiance to be polarized:

[. studies performed in 1974 by Maxwell et al in the emitted

infrared part of the spectrum 302 show polarization to

K' exist in an angularly anisotropic manner in the thermal

- infrared region. Although considerable angular anisotropy

in polarization differences with vertical and horizontal

polarizations have been detected, little is apparently known

about the interaction of such polarized scene radiance with

inherent sensor polarization effects: indeed inherent polarization

of detectors appears to have received little attention.

SZ



Quantitative measurements are necessary here in order to

ensure predictable accuracy of targeting data. It is

essential that the interaction of polarized scene radiance,

the depolarizing effect of the atmosphere, the polarized sky

radiance and the inherent polarization of the sensing

devices be investigated to provide optimum targeting data.

That is, it is essential to minimize failure to detect

targets, to minimize misclassification of targets and to

uzilize ail potentially available information to detect,

quantify and track targets.

4. The possible combination of multiband approaches in

Qwhich polarization effects are utilized appears attractive,

since polarization differences in scene radiance or in

target versus sky radiance are markedly greater in the

ultraviolet part of the spectrum as compared to, for

example, the emitted infrared part of the spectrum. Such

considerations are, it is suggested, of vital importance in

horizon and nadir-viewing sensors based on satellite or high

altitude airborne platforms. They may also be of use in

skytracking camera and in missile terminal guidance systems.

5. The utilization of staring sensors to detect target

motion necessitates the knowledge of the point-spread

function of each element of the array or of any other device

which is used to image a scene. This is because a movement

of* less than 1 pixel in sensor pointing will change the

radiometric and spectral signature from the scene because of

the movement of the point-spread function with respect to

the tuargt/bickground composite scene.

. . . *
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6. The effects of scene obscurants and their

interaction with elements of two-dimensional arrays needs to

be further studied. Clearly, each element will have a

. slightly different absolute radiometric sensitivity,

spectral response, inherent polarization (especially in the

case of ferroelectric pyroelectric devices) and also point

spread function. Such inter-detector differences can lead to

errors in an image.

7. Cirrus and unresolved cloud, as well as localized

obscurants will manifest themselves as scene elements (i.e.

components of a heterogeneous pixel). The effects of these

components upon radiometric signatures needs considerable

study in so far as it effects target detection, tracking and

* . quantification. Modelling studies would be inexpensive and

a logical first step.

8. A model for the two-dimensional array in which the

point-spread functions are mapped in a two-dimensional

diagram is necessary before it is possible to determine the

optimum method of dynamic viewing. it is suspected that

this will depend upon the angular viewing regime and upon

the target-to- background contrast as well as upon the

portion of the pixel occupied by the target and upon target

aspect.

.

6%



9. Further modelling studies should be performed and

should integrate terrestrial vegetation emittance models in

order to predict parametric envelopes for optimum data

acquisition and analysis. For reasons discussed in section

3, it will be necessary to model sensor output for each

sensor element in a two-dimensional array, pushbroom array,

or scanning device so as to take into account the

radiometric point or line spread functions spectral

response, polarization characteristics, detector noise, and

the interaction of each of these parameters with spectral

scene radiance. The importance of the difference in angular
II

anisotropy in scene radiance from each scene component will

depend upon the point-spread function of each scene element.

Models of typical arrays could be used mathematically to

predict optimum dynamic viewing conditions to optimize target-

to-background discrimination under different atmospheric and

meteorological conditions, for different geographical regions

and for different sensor types. Further, utilizing the tech- r

niques of modelling studies could suggest possible new sensor

combinations to optimize target discrimination, tracking and

quantification.

10. It is strongly recommended that this work be

continued and that modelling studies incorporating some or

all of the above be pursued as a matter of urgency in order

- .: - -.. .. . o... .... .. . .. . .. .•.....



to better define optimum parametric envelopes for optimal

data acquisition and real-time processing. It has been

- shown that targets and backgrounds which are similar in

- temperature may be discriminated under a variety of

atmospheric conditions. The suite of data used in such

studies should be expanded, the models made more

sophisticated so as to include spectral and point-spread

function information on the sensing devices. Random and

systematic error sources described above should also be

further investigated in order to determine their effects on

target detection, tracking and quantification accuracy.

U,.

.2. 
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FIGURE CAPTIONS

Fig. 1. Overall picture of interactions between incident

and reflected radiance, the atmosphere and the

earth's surface.

Fig. 2. Interactions between solar radiance and the earth's

atmosphere.

Fig. 3. Nomenclature for the interactions of light energy

at the earth's surface. Hemispherical-directional

reflectance.

. Fig. 4. Angular notation relating incident and reflected

radiance. Bidirectional reflectance.

Fig. 5. Angular notation for reflected target radiance.

Fig. 6. Wavelength dependence and view zenith angle

dependence of bidirectional reflectance factor for

wheat at boot stage, for solar zenith and azimuth

angles typical for NOAA-6 ephemeris. The LARSPEC

36,70
data base was used in this calculation

Fig. 7. The relationship between incident, absorbed and

reflected radiance.

Fig. 8. The relationship between radiance from the target,

absorbed radiance and radiance scattered from the

beam to the sensor.

.................................................
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Fig. 9. Wavelength dependence of those factors which

determine sensor output. -

Fig. 10. Showing that two sensors with the same nominal

half-power and zero-power bandpass values and

wavelength limits can differ so as to proouce

different sensor outputs when viewing the same

target.

Fig. 11. Flow chart showing those factors controlling

variations in sensor output in the optical

reflective part of the spectrum.

Fig. 12. Flow chart showing those factors controlirn

variations in sensor output in the thernrl infr..rea

part of the spectrum. - --

Fig. 13. The superposition of a hypothetical contoured

point-spread function for a detector on a

heterogeneous pixel, showing that the movement of

the instanteous field of view by a fraction of a

pixel can change the sensor output.

Fig. 14. The dependence of the vegetation index contrast

ratio (VINMAX/VINMrN) on view zenith angle and on

the percentage of unresolved cloud in the IFOV over

the targets to be distinguished (percentage of

cloud assumed to be the same in each case). Here

(VIN = AVHRR2/AVHRR1) and the atmosphere is clear

(meteorological range > 50 km).

7
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Fig. 15. The dependence of the contrast ratio (ViNMAX/VINMIIN)

on view zenitn angle and on the percentage of

unresolved cloud in the IFOV over the targets to be

distinguished (percentage of cloud assumed to be

the same in each case). Here (VIN = AVHRR2/AVHRR1)

and the atmosphere is turbid (meteorological range <

10 kin).

Fig. 16. The relationship between emitted thermal target

radiance, atmospheric extinction and radiance

incident on the sensor.

Figs. Al-A3. The calculated relationship between the dis-

criminability function (D.F.) for detector

bandpass 3.5-4.1 -rm, target temperature TA

and (I - cA) where E target emissivity

for background temperature TB = 275°K, back-

ground emissivity eB = 0.90 and atmospheric

transmission T= 1.00. The degree of varia-

tion in emissivity and atmospheric transmis- .1

sion considered is discussed in the text.

Three different rotations of the same calcu-

lated data are shown.

Figs. A4-A6. Similar to Figs. AI-A3, but for T= 0.70 and

CB 0.85.

Figs. Bl-B3. Similar to Figs. Al-A3 but for detector bandpass __

11.0 - 12.0 UM: T = 1.00 and EB = 0.90.

Figs. B4-B6. Similar to Figs. BI-B3 but for 7 = 0.60 and

B 0.85.
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Fig. C1. The discriminability function (D.F.) is shown as a

function of the ratio of the atmospheric transmission

values and t2 in two bandpasses and as a function

of target temperature TA. The correlation coefficient

between the radiance recorded from the target in each

bandpass is taken to be 0.1 Here the coefficients

of variation in the emissivities of target -A and

of background cB and in atmospheric transmission

values T1 , 2 are taken as 0.01. The emissivity

of the target is assumed to be spectrally invariant.

Fig. C2. As Fig. Cl but with the coefficients of variation in . -

CA' :B' I and 72 = 0.05.

Fig. C3. As Fig. C1. but with the correlation coefficient

between the radiance values recorded from the tar-

get in bands 1 and 2 (3.5 - 4.1 vim and 11.0 - 12.0 pm

respectively) taken to be 0.90.
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FIG. 12
2. THERMAL INFRARED REGION

SYSTEMATIC VARIATION IN ANGULAR ANISOTROPY OF TARGET -
AND BACKGROUND SPECTRAL EMISSIVITY

RANDOM VARIATIONS IN THERMAL CAPACITY AND DIFFUSIVITY .6

OF SCENE COMPONENTS

- RANDOM VARIATIONS IN HETEROGENEITY OF IFOV --

TRANSMISSION

VARIATIONS IN LEVEL AND SPEC'rAL DISTRIBUTION OF SCENE" " RADIANCE

i MICROSCOPIC VARIATIONS IN ATMOSPHERIC TRAN4SMtSSION AND

SELF-RADIANCE

VARIATIONS IN LEVEL AND SPECTRAL DISTRIBUTION OF RADIANCE

INCIDENT ON SENSOR

VARIATIONS LN SENSOR NOISE. OPTICAL OFF-AIS EFFECTS,
i POINT-SPREAD FUNCTION EFFECTS, SPECTRAL RESPONSE OF SENSOR

VARYING SENSOR OUTPUT WITHIN AND BETWEEN CHANNELS.
DEPENDING ON VIEWING GEOMETRY. ETC.

Q VARIATIONS IN ACCURACY OF TARGET DETECTION. IDENTIFICATION 1
AND TRACKING, WITHIN REAL-TIME, USING THRESHOLDING,RATIOlNG OR UNSUPERVISED CLUSTERING METHODS FOR DISPLAY ORMAP PP ING. 
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FIG. 11
i. UPTICAL-KELECTIVE REG ION

VARIATION IN LEVEL AND ANGULAR DISTRIBUTION OF SKYLIGHT (DUE

TO PARTICLE SIZE DISTRIBUTION AND DENSITY)

VARIATION IN ATMOSPHERIC TRANSMITTANCE

r7

VARYING LEVEL AND ANGULAR DISTRIBUTION OF IRRADIANCE FIELD

)SYSTEMATIC VARIATION IN BDRF (ANGULAR ANISOTROPY) PLUS

"KANDOM VARIATIONS IN HETEROGENEITY OF SCENE IN IFOV.

SVARIATIONS IN SLOPE, ASPECT. ETC.
V"

VARYING LEVEL AND SPECTRAL DISTRIBUTION OF SCENE RADIANCE__J

VARY LNG ATMOSPHERIC SPECTRAL TRANSMISSION PLUS VARYING Ii I SPECTRANL FATH RADIANCE ._

* RYKING LEVEL AND SPECTRAL DISTRIBUTION OF SIGNAL INCIDENT
_N SENSORI
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, -. I Sr.NSoR
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